CURRICULUM VITAE

Employee ID	32149	
FRP file No.	F.4-5(134)/2014(BSR)/FRP (ID: <i>FRP13100</i>)	
Name	Dr. Raju Jannapu Reddy (Dr RJ REDDY)	
Designation	UGC-Assistant Professor	
Address	Department of Chemistry, University College of Science,	- AL
	Osmania University, Hyderabad-500 007	
E-mail	<u>rajuchem77@osmania.ac.in; rajuchem08@yahoo.co.in</u>	
Telephone	+917893727899; +9104035049749 (Home)	
Website	https://www.rjreddyresearchgroup.com/	
Address E-mail Telephone	Department of Chemistry, University College of Science, Osmania University, Hyderabad-500 007 <u>rajuchem77@osmania.ac.in</u> ; <u>rajuchem08@yahoo.co.in</u> +917893727899; +9104035049749 (Home)	Contraction of the second

Academic Qualification

Degree	Year	Subject	University/Institution	% of marks
10 th	1994	Maths, Science and Social	Board of Secondary Education	69.5%
12 th	1996	Chemistry, Physics and Maths	Board of Intermediate Education	68.6%
B.Sc.	1999	Chemistry, Physics and Maths	Kakatiya University, Warragal	66.0%
M.Sc.	2001	Organic Chemistry	Kakatiya University, Warragal	71.5% (Distin.)
Ph.D.*	2008	Organic Chemistry	University of Hyderabad	Awarded
*Ph.D. thesis title. Guide's Name. University. Year of Award. "Applications of the Baylis-Hillman				

*Ph.D. thesis title, Guide's Name, University, Year of Award. "Applications of the Baylis-Hillman adducts: Towards development of novel strategies for synthesis of spiro- and heterocyclic compounds" Prof. Deevi Basavaiah, School of Chemistry, University of Hyderabad; Submitted on 12-Dec-2007; Viva Voce held on 17-Apr-2008 and Result declared on 25-Apr-2008.

Post-PhD Research and Teaching Experience (*in chronological order***)**

Period of Position Positions held		Name of the Institute
19-Jan-2015 to till date	UGC-Assistant Professor	Osmania University, India
21-Jan-2013 to 18-Jan-2015	Marie Curie Research Fellow	University of Birmingham, UK
20-Nov-2010 to 19-Nov- 2012	JSPS Postdoctoral Fellow	Kyoto Pharmaceutical University, Japan
02-Aug-2008 to 22-Oct-2010	NSC Postdoctoral Fellow	National Taiwan Normal University
01-Aug-2001 to 31-Jul-2002	R & D Chemist	Dr. Reddy's Laboratories Pvt. Ltd., Hyd.

Sponsored Research Grants

Ongoing Projects					
Funding agencyAmount sanctionedDurationProject Status					
SERB-CRG (PI) Rs. 40,07,696 01-12-2021 to 30-11-2024 Ongoing					
		cal Cyclization (ATRC): Thiosulfo	nylation of		
Unactivated Carbon-Carbon	Multiple Bonds (File No. (CRG/2021/003544)			
	Completed	l Projects			
UGC-Startup+XII Plan (PI) Rs. 7,00,000 05-11-2015 to 04-11-2018 Completed					
Title: Thiolation of heteroan	romatics via C-H activation	n (File No. F.4-5/2006/BSR)			

SERB-ECR (<i>PI</i>)	Rs. 33,10,900	23-03-2016 to 22-03-2019	Completed	
<i>Title:</i> Cascade C-H Functionalization for Synthesis of N,S-Heterocycles (File No. ECR/2015/000053)				
OU DST-PURSE-II (PI) Rs. 3,87,000 14-09-2017 to 28-02-2022 Completed				
<i>Title:</i> Divergent synthesis of dibenzothiazepines and their biological evaluation (File No. SR/PURSE Phase 2/32/G)				
CSIR-EMR-II (<i>PI</i>)	Rs. 27,80,407	16-07-2018 to 31-01-2022	Conveloted	
LSIK-EMIK-II (<i>PI</i>)	KS. 27,00,407	10-07-2010 10 51-01-2022	Completed	
	· ·	is of N-Heterocycles (File No. 02(
	· ·			

Professional Recognition/Award/ Prize/Certificate/Fellowship

S. No.	Recognition/ Award/ Prize/Certificate	Agency	Year
1.	Received a certificate from RSC for our "OBC		
	review" as recognized within the top 10 cited	Royal Society of Chemistry (RSC)	2023
	articles for 2022	publishers	
2.	Received a certificate from RSC for our "RSC		
	Adv. Review" as recognized within the top 10	publishers	2023
	cited articles for 2022		
3.	Invited as a " <i>Chairperson"</i> for J-NOST	J-NOST	2022
4.	Received a certificate of appreciation for	5	2022
	research excellence during Vice Chancellor		
	Award 2022 on 3-Jan-2022		0000
5.	Received a certificate from Thieme Chemistry		2022
	for our "SynOpen" as recognized within the top		
	cited articles for 2021		2021
6.	Shortlisted for <i>Synthesis</i> Best Paper Award	Thieme Chemistry Journals	2021
7.	<u>Highlighted our "SYNOPEN" paper in the SynForm</u> News	Thieme Chemistry Journals	2021
8.	Associate Fellow	Telangana Academy of Sciences	2018
9.	Early Career Research Grant Award	SERB-ECR	2016
10.	UGC-Assistant Professor	UGC-Faculty Recharge Programme	2014
11.	Member of RSC (MRSC)	Royal Society of Chemistry (RSC)	2013
12.	Marie-Curie International Incoming Fellowships		2012
13.	Member of Pharmaceutical Society, Japan	Pharmaceutical Society of Japan	2011
14.	JSPS postdoctoral fellowship, Japan	JSPS overseas Postdoctoral Scheme, Japan	2010
15.	Received a certificate from RSC for "Chem. Soc.	Royal Society of Chemistry (RSC)	
	Rev. " as recognized our within the top 10 cited	publishers	2010
	articles for 2018		
16.	Qualified CSIR and awarded JRF/SRF	Joint CSIR-UGC-JRF New Delhi, India	2001
17.	Qualified GATE-2001	Graduate Aptitude Test in Engineering	2001

LIST of PUBLICATIONS

Google Scholar link: <u>https://scholar.google.com/citations?user=cMrkAd0AAAAJ&hl=en</u>

37 Papers + 4 Review articles + 2 Book Chapters
1964
23
33

	Publications (Ø Osmania University as an Independent	dent Researche	er
SNo	Author(s)	Title of Paper	Reference of Journal	Impact Factor (IF)/H5-Index
23	Sharadha, N., Kumari, H. K. and Reddy, R. J. *	Transition-Metal-Free Annulation of Sulfonyl- Derived 1,3-Enynes: Simple and Efficient Construction of 2,4-Disubstituted Thiophenes and Vinyl Sulfone-Tethered 1,2,3- <i>NH</i> -Triazoles	<u>Asian J. Org.</u> <u>Chem., 2024,</u> <u>e202400211</u>	IF: 2.70 H5: 55
22	Kumari, H. K., Kumar, J. J., Sharadha, N., Krishna, G. R. and Reddy, R. J. *	Visible-Light-Induced Radical Sulfonylative- Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzo- heteroles	<u>ChemSusChem,</u> <u>2024, 10,</u> e202400227	IF: 8.40 H5: 187
21	Reddy, R. J. * Kumar, J. J. and Kumari, H. K.	Recent trends in the synthesis and applications of β -iodovinyl sulfones: A decade progress (<i>Review article</i>).	Org. Biomol. Chem. 2024, 22, 2492-2509.	IF: 3.10 H5: 130
20	Reddy, R. J. * Sharadha, N. and Krishna, G. R.	Pd(II)-Catalyzed Tandem Cycloannulative- Alkenylation of <i>ortho</i> -Alkynyl-Phenols/ Anilines with (<i>E</i>)-β-Iodovinyl Sulfones: A Direct Strategy to Construct 3-(Vinyl Sulfonyl)- Benzoheterole Derivatives	<i>J. Org. Chem.</i> 2023, <i>88</i> , 8889- 8903.	IF: 3.67 H5: 239
19	Reddy, R. J. * Kumar, J. J. and Kumari, H. K.	Mn(OAc) ₃ -Mediated Unexpected Cycloannula- tive-Sulfonyl Migration Cascade using (E) - β - Iodovinyl Sulfones and <i>ortho</i> -Alkynylphenols: An Expedient Synthesis of Chromene-derived Vinyl Sulfones	<u>Org. Lett. 2023,</u> 25, 2207–2212.	IF: 5.36 H5: 252
18	Reddy, R. J. * Kumari, H. K. and Krishna, G. R.	Unified Radical Sulfonylative-Annulation of 1,6-Enynols with Sodium Sulfinates: A Modular Synthesis of 2,3-Disubstituted Benzoheteroles	J. Org. Chem. 2023, 88, 1635-1648	IF: 3.67 H5: 239
17	Reddy, R. J. * Kumari, A. H., Sharadha, N. and Krishna, G. R.	Solvent-Dependent Mono- and Bis-Thiolation of (E) - β -Iodovinyl Sulfones with Thiols for Flexible Synthesis of 1,2-Thiosulfonylalkenes and 1,2-Dithioalkenes	J. Org. Chem. 2022, 87, 3934- 3951.	IF: 3.67 H5: 239
16	Reddy, R. J. * Kumar, J. J. and Krishna, G. R.	K ₃ PO ₄ -Promoted Cycloannulation of (E) - β - Iodovinyl Sulfones with <i>ortho</i> -Hydroxy- Chalcones/Cinnamates for the Synthesis of 2,3,4- Trisubstituted-4 <i>H</i> -Benzopyran Derivatives	<u>Adv. Synth.</u> <u>Catal., 2022,</u> <u>364, 4080– 4087</u>	IF: 5.40 H5: 168

 15 Reddy, R. J.* Waheed, Md., Kumari, A. H., and Krishna, G. R. 14 Reddy, R. J.* Sharadha, 14 Reddy, R. J.* Sharadha, 	pargyl <u>319-325</u>	IF: 5.40 H5: 168
Krishna, G. R. Membered Hetero-cycles from <i>O-/N</i> -Prop derived Benzyl Thiosulfonates with Or Azides 14 Reddy, R. J.* Sharadha, Base-mediated [3+2]-cycloannulation str	pargyl <u>319-325</u>	H5: 168
14 Reddy, R. J.* Sharadha, Base-mediated [3+2]-cycloannulation str		ПЭ: 100
Azides 14 Reddy, R. J.* Sharadha, Base-mediated [3+2]-cycloannulation str	Igailic	i i i i i i i i i i i i i i i i i i i
14 Reddy, R. J. * Sharadha, Base-mediated [3+2]-cycloannulation str	· · · · · · · · · · · · · · · · · · ·	
	rategy <u>Org. Biomol.</u>	IF: 3.20
IN Kumari A. H. I tor the cupthodic of purposed of a low		IF: 5.20
N. Kumari, A. H.for the synthesis of pyrazolo[1,5-a]pyr derivatives using (E)-β-iodovinyl sulfones		HE 400
		H5: 130
	chable <u>New. J. Chem.</u>	IF: 3.3
A., Kumar, J. J. synthesis of bis(imidazoheterocycles) de	erived 2022 46 4794	
Sharadha, N., and disulfanes and sulfanes using imi	1dazo- 4791	H5: 131
Krishna, G. R. heterocycles and octasulfur		
12 Kumari, A. H., Kumar, J. Ni-Catalyzed Difunctionalization of Al		IF: 2.56
J., Krishna, G. R. and Bromides with Thiosulfonates and N-Ary		
Reddy, R. J.* Succinimides: A Convenient Synthesis o		H5: 151
Thiosulfonylethenes and 1,1-Dithioeth		ļ
(Shortlisted for the "Synthesis Best H	raper	
Award-2022")		
11 Reddy, R. J. ,* Kumari, Recent Advances in the Synthesis		IF: 3.20
A. H. and Kumar, J. J. Applications of β -Keto Sulfones:	New <u><i>Chem.</i> 2021, 19,</u>	
	3–Keto <u>3087-3118</u>	H5: 130
Thiosulfones (Review article); Recogniz	zed as	
a Top 10% cited article in 2022.		
10 Shankar, A., Waheed, Simple and Efficient Synthesis of Allyl Sul		IF: 2.15
	Radical <u>5, 91–99</u>	
Sulfonylation of Morita-Baylis–Hi		H5: 09
Adducts with Thiosulfonates (Highlight		
the SynForm News and Top Cited A	<u>Irticle</u>	
<u>2022</u>)		
9 Reddy, R. J. [*] and Synthesis and Applications of So		
Kumari, A. H.Sulfinates (RSO2Na): A Powerful Building		IF: 4.08
for the Synthesis of Organosulfur Compo		
(Review article); Selected as Most Pop		H5: 189
articles and Recognized as a Top 10%	cited	ļ
article in 2022.		
	andem <u>Org. Biomol.</u>	IF: 3.20
Md. and Krishna, G. R. construction of S–S and C–S bonds: a		ļ
method for the synthesis of b		H5: 130
disulfanylsulfone derivatives from S-b	penzyl	ļ
thiosulfonates		
7 Reddy, R. J. ,* Kumar, J. Pd-Catalysed Annulation of beta-Iodo		IF: 5.40
J., A. H. Kumari and G. R. Sulfones with 2-Halophenols: A General I		
Krishana for the Synthesis of 3-Sulfonyl Benzo	ofuran <u>362, 1317-1322</u>	H5: 168
Derivatives		
6 Reddy, R. J. ,* Shankar, Efficient, Sequential One-Pot Approach		IF: 2.70
A. and Kumari, A. H. Diverse C3-Functionalized Imidazo[1		
pyridines Under Transition-Metal	Free <u>2269-2275</u>	H5: 55
Conditions		
	ovinyl <u>Eur. I. Org.</u>	IF: 2.84
5 Reddy, R. J.,* Kumar, J. Unprecedented Reactivity of beta-Iodo		
 5 Reddy, R. J.,* Kumar, J. J. and Kumari, A. H. Sulfones: An Efficient Synthesis of β Sulfones and β-Keto Thiosulfones 		H5: 167

	1			
4	Reddy, R. J.,* Kumari,	Cs ₂ CO ₃ -Mediated Vicinal Thiosulfonyl-ation of	<u>Adv. Synth.</u>	IF: 5.40
	A. H., Kumar, J. J. and	1,1-Dibromo-1-Alkenes with Thiosulfonates:	<u>Catal. 2019,</u>	
	Nanubolu, J. B.	An Expedient Synthesis of (<i>E</i>)-1,2-	<u>361, 1587-1591.</u>	H5: 168
3	Reddy, R. J.,* Waheed,	Thiosulfonylethenes A straightforward and convenient synthesis of	<u>RSC Adv., 2018,</u>	IF: 4.08
3	Md. and Kumar, J. J.	functionalized allyl thiosulfonates and allyl	<u>8, 40446–40453</u>	Ir: 4.00
	Mu. anu Kumar, j. j.	disulfanes	0, 10110-10135	H5: 189
2	Reddy,* R. J., Shankar,	Metal-free highly regioselective sulfonylation	<u>Tetrahedron</u>	IF: 1.82
_	A., Waheed, Md. and	of <i>NH</i> -1,2,3-triazoles with sodium sulfinates	Lett., 2018, 59,	
	Nanubolu, J. B.	and thiosulfonates	2014-2017	H5: 178
1	Reddy, R. J.,* Waheed,	Efficient synthesis of 4-aryl-5-multifunctional-	<u>New J. Chem.,</u>	IF: 3.3
	Md., Karthik, T. and	2H-1,2,3-triazoles from nitroallylic derivatives	<u>2018, 42, 980-</u>	
	Shankar, A.	via cycloaddition-denitration process	<u>987</u>	H5: 131
Pul	olications during the	Postdoc (UK, Japan and Taiwan) and	PhD (Univ. of H	lyderabad)
SNo	Author(s)	Title of Paper	Reference of	Impact Factor
			Journal	(IF)/H5-Index
18	Reddy, R. J., Ball-Jones,	Alkynyl thioethers in gold-catalysed	<u>Angew. Chem.</u>	IF: 16.04
	M. P. and Davies, P. W.	annulations to form oxazoles	<u>Int. Ed., 2017,</u>	
			<u>56, 13310-</u>	H5: 612
17	Garzon, M., Arcea, E. M.,	General Entry into <i>o-,o</i> '-Heteroatom-Linked <i>N</i> -	<u>13316.</u>	IF: 5.40
17	Reddy, R. J. and Davies,	(Hetero)aryl Imidazole Motifs by Gold-	<u>Adv. Synth.</u> Catal., 2017,	IF: 5.40
	P.W.	Catalysed Formal [3+2]-Dipolar Cycloaddition	<u>359, 1837-1843</u>	H5: 168
	1	(designated as VIP)	<u>555, 1057-1015</u>	115. 100
16	Gillie, A. D.,+ Reddy, R.	Efficient and Flexible Synthesis of Highly	Adv. Synth.	IF: 5.40
	J., ⁺ and Davies, P. W.	Functionalised 4-Aminooxazoles by a Gold-	<i>Catal.</i> , 2016,	
	(<i>+equally contributed</i>)	Catalysed Intermolecular Formal [3+2] Dipolar	<u>358, 226-239</u>	H5: 168
		cycloaddition (<i>designated as VIP</i>)		
15	Reddy, R. J., Kawai, N.,	Synthesis of 1-Phenethyltetrahydro-	<u>J. Org. Chem.,</u>	IF: 3.67
	Uenishi, J.	isoquinoline Alkaloids (+)-Dysoxyline, (+)-	<u>2012, 77,</u>	
4.4		Colchiethanamine and (+)-Colchiethine	<u>11101-11108</u>	H5: 239
14	Reddy, R. J., Lee, PH.,	Kinetic resolution of activated nitroallylic acetates with aldehydes and ketones <i>via</i>	<u>Eur. J. Org.</u> <u>Chem., 2012,</u>	IF: 2.84
	Magar, D. R., Chen, JH. and Chen, K.	conjugate addition-elimination SN2' process	<u>Chem., 2012.</u> 353-365	H5: 167
13	Reddy, R. J. and Chen,	Highly Efficient Organocatalytic Kinetic	<u>Org. Lett., 2011,</u>	IF: 5.36
10	K.	Resolution of Activated Nitroallylic Acetates	<i>13</i> , 1458-1461	1110100
		with Aldehydes via Conjugate Addition-		H5: 252
		Elimination		
12	Ting, YF., Chang, C.,	Pyrrolidine-Camphor Derivatives as a New	<u>Chem. Eur. J.,</u>	IF: 4.26
	Reddy, R. J., Magar, D.	Class of Organocatalysts for Direct Asymmetric	<u>2010, 16, 7030-</u>	
	R. and Chen, K.	Michael Addition of Aldehydes and Ketones to	<u>7038</u>	H5: 261
11		β-Nitroalkenes	The formula of the	UE 0.44
11	Kuan, HH., [†] Reddy, R.	An efficient Morita-Baylis-Hillman reaction for	<u>Tetrahedron</u>	IF: 2.11
	J. [†] and Chen, K. († <i>equally contributed</i>)	the synthesis of multifunctional 2-hydroxy-3- nitrobut-3-enoate derivatives	<u>2010,</u> <i>66</i> , <u>9875-</u> 9879	H5: 231
10	Basavaiah, D., Reddy ,	The Baylis-Hillman adducts as a valuable	Helv. Chim. Act.,	IF: 1.84
10	R. J. and Lenin, D. V.	source for one-pot multistep synthesis: A facile	2010 , <i>93</i> , 1180-	11.1.04
	j. and Lonin, D. V.	synthesis of 5-substituted-2-piperidones	<u>1186</u>	H5: 86
9	Liu, PM., Chang, C.,	Remarkable reaction Rate and excellent	<u>Eur. J. Org.</u>	IF: 2.84
	Reddy, R. J. , Ting, YF.,	enantioselective direct α -amination of	<u>Chem., 2010,</u>	
	Kuan, HH. and Chen, K.	aldehydes with azodicarboxylates catalyzed by	42-46	H5: 167
		pyrrolidinyl-camphor derived organocatalysts		

8	Doddy D. L. Kuon II	Nevel Drolinomide Comphene Containing	Cham Fun I	IF: 4.26
8	Reddy, R. J. , Kuan, H H., Chou, TY., and	Novel Prolinamide-Camphor Containing Organocatalysts for Direct Asymmetric Michael	<u>Chem. Eur. J.,</u> 2009, 15, 9294-	IF: 4.20
				H5: 261
	Chen, K.	Addition of Unmodified Aldehydes to	<u>9298</u>	H5: 201
-		Nitroalkenes		
7	Chang, C., Li, SH.,	Pyrrolidine-Camphor Derivative as an	<u>Adv. Syn. Catal.</u>	IF: 5.40
	Reddy, R. J. and Chen,	Organocatalyst for Asymmetric Michael	<u>2009</u> , <i>351</i> , 1273-	
	К.	Additions of α, α -Disubstituted Aldehydes to β -	<u>1278</u>	H5: 168
		Nitroalkenes: Construction of Quaternary		
		Carbon Bearing Aldehydes under Solvent-Free		
		Conditions		VE 0.44
6	Tzeng, ZH., Chen, HY.,	Highly diastereo- and enantio-selective direct	<u>Tetrahedron</u>	IF: 2.11
	Reddy, R. J., Huang, C	aldol reactions promoted by water-compatible	<u>2009</u> , <i>65</i> , 2879–	
	T. and Chen, K.	organocatalysts bearing a pyrrolidinyl-	<u>2888</u>	H5: 231
_		camphor structural scaffold		IE 2.00
5	Basavaiah, D., and	Simple and facile synthesis of tetralone-spiro-	Org. Biomol.	IF: 3.20
	Reddy, R. J.	glutarimides and spiro-bis-glutarimides from	<u>Chem., 2008, 6,</u>	
		Baylis-Hillman acetates	<u>1034-1039</u>	H5: 130
4	Basavaiah, D, Rao, K. V.	The Baylis-Hillman reaction: a novel source for	<u>Chem. Soc. Rev.</u>	IF: 46.22
	and Reddy, R. J.	attraction, opportunities, and challenges in	<u>2007, 36, 1581-</u>	
		synthetic chemistry (Recognized as a Top	<u>1588</u>	H5: 595
_		10% cited article in 2008)		
3	Basavaiah D, Reddy, R.	Applications of Baylis-Hillman adducts: A	<u>Tetrahedron</u>	IF: 1.82
	J. and Rao, J. S.	simple, convenient, and one-pot synthesis of 3-	<u>Lett., 2006, 47,</u>	
_		benzoylquinolines	<u>73-77</u>	H5: 178
2	Basavaiah, D., Rao, J. S.,	TiCl ₄ catalyzed tandem construction of C-C and	<u>Chem. Commun.,</u>	IF: 4.90
	Reddy, R. J. and Rao, A.	C-O bonds: a simple and one-pot atom-	<u>2005, 2621-</u>	
	J.	economical stereoselective synthesis of spiro-	<u>2623</u>	H5: 363
	-	oxindoles		
1	Basavaiah, D., Rao, J. S.,	Simple, facile and one-pot conversion of the	<u>J. Org. Chem.,</u>	IF: 3.67
	and Reddy, R. J.	Baylis-Hillman adducts into functionalized	<u>2004, 69, 7379-</u>	
		1,2,3,4-tetrahydroacridines and cyclopenta-	<u>7382</u>	H5: 239
		[b]quinolines		

Books/Book Chapters, etc.

SNo	Title of the Article	Author's Name	Publisher	Year of Publication
1.	Cycloannulation strategies for the direct	Reddy, R. J.,* A.	Italian Chemical	Targets in Heterocyclic
	construction of 3-functionalized	H. Kumari and N.	Society	Systems, 2023, Volume
	benzoheteroles (<i>Book Chapter</i>)	Sharadha		<i>27</i> , pages 222-252
	http://dx.medra.org/10.17374/targets.2024.27.222			
2.	Other 2-substituted pyrrolidines as	Reddy, R. J. and	Royal Society	Sustainable Catalysis,
	asymmetric organocatalysts (<i>Book Chapter</i>)	Chen, K.*	of Chemistry	2015 , Volume 2,
	ISBN: 9781782620570			Chapter 9, pp 200-235
3.	Applications of Baylis-Hillman adducts: A	Reddy, R. J.	LAMBERT	2012
	novel strategies for synthesis of spiro and		Academic	ISBN-10:365921707
	heterocyclic compounds (Book Monograph)		Publishing	

Oral and poster presentations (***Represents presented poster)**

- 1) **Invited talk** on *"Exploration of Cycloannulation Strategies using (E)-beta-Iodovinyl Sulfones"* in "Nature Inspired Initiatives in Chemical Trends (NIICT-2024" held at CSIR-IICT, Hyderabad, during 7-9 March 2024.
- Invited talk on "Modular Catalytic Routes for Sulfonyl-Benzoheteroles" in "Indo-French Seminar on "Fostering Catalysis for Societal Benefit (FCSB-2024)" held at School of Chemistry, University of Hyderabad, Hyderabad, during Jan 15-17, 2024.
- 3) Invited talk on "Applications of (E)-beta-Iodovinyl Sulfones in Organic Synthesis" in "2nd International Conference on Frontiers in Chemical Sciences (ICFCS-2023)" at the Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, during October 26-27th, 2023.
- 4) As a **Resource Person**, delivered a talk entitled "*Principles, Practice of Green Chemistry and Beyond*" on 22nd Dec 2023 to the participants of the "*Certificate Course on Green Chemistry in Drug Discovery and Developement*" organized by the RBVRR Women's College of Pharmacy, Hyderabad.
- 5) <u>Invited talk</u> on "*Cycloannulation Strategies using (E)-beta-Iodovinyl Sulfones*" in international Conference on "FRONTIERS AT THE CHEMISTRY–ALLIED SCIENCES INTERFACE (FCASI-2023)" 20-21 April 2023, Department of Chemistry, University of Rajasthan, Jaipur.
- 6) As a **<u>Resource Person</u>**, delivered a talk entitled "*Visualize the role of chemistry in daily life*" on 28th February 2023 to the participants of the "*Faculty Induction Programme*" organized by the UGC-HRDC (*Academic Staff College*), Osmania University, Hyderabad from 01.02.2023 to 01.03.2023.
- 7) As a <u>Resource Person</u>, delivered a talk entitled "*Importance of Chemistry in Everyday Life*" on 24-Sept-2022 to the participants of the "*Faculty Induction Programme*" organized by the UGC-HRDC (*Academic Staff College*), Osmania University, Hyderabad from 06.09.2022 to 04.10.2022.
- 8) **Participated** as a member of Indian-JSPS Alumni Association in 12th India-Japan Science and Technology Conclave: "*International Conference on Frontier Areas of Science and Technology (ICFAST-2022)*," held at the University of Hyderabad from September 09 to 10, 2022.
- 9) Invited talk on "(E)-Iodovinyl Sulfones: Powerful Building Block in Organic Synthesis" in a three-day INTERDISCIPLINARY INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN APPLIED SCIENCES-2022 (IICCTAS-2022), 1st-3rd September, 2022, Department of Chemistry, Loyola Academy, Degree and PG College, Secunderabad.
- 10) As a **<u>Resource Person</u>**, delivered a talk entitled "*Chemistry in Everyday Life*" on 13-June-2022 to the participants of Three Week Industrial Training Programme for the faculty of Pharmacy of Government Polytechnic Colleges in Telangana state organized by the UGC-HRDC (Academic Staff College), Osmania University, Hyderabad from 01.06.2022 to 21.06.2022.
- 11) Invited talk on "β-Iodovinyl Sulfones: A Versatile Building Block in Organic Synthesis" in international Conference on "XXXX Annual National Conference of the Indian Council of Chemists" going to be held at Satavahana University, Department of Chemistry, Karimnagar on 29th December, 2021.
- 12) Invited talk on "Diverse Reactivity of Thiosulfonates in Organic Synthesis" in NATIONAL CONFERENCE on "EMERGING TRENDS IN INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS (ETIMCA-2019)" 30th-31st January, 2019, Department of Chemistry, National Institute of Technology Warangal.
- 13) **Invited talk** on "Synthesis and Practical Applications of Thiosulfonates" in international Conference on *"FRONTIERS AT THE CHEMISTRY–ALLIED SCIENCES INTERFACE"* 21-22 December 2018, Department of Chemistry, University of Rajasthan, Jaipur.
- 14) As a **Resource Person**, delivered a lecture "Organic Chemistry Practical" on 13-Dec-2018 in the "Faculty Development Programme in Chemistry for UG Teachers: A Re-Orientation to the Restructured CBCS Curriculum" organized by the Department of Chemistry, Osmania University.

- 15) <u>A poster presentation</u> in "Peakdale synthesis in drug discovery and development: 3rd Symposium" held at Leeds Metropolitan University, UK on September 3, 2014. Synthesis and Applications of 4N-Substituted Oxazoles, <u>Reddy R J</u>* Gillie A, and Davies P W.
- 16) <u>A poster presentation</u> in *"RSC Organic Division Midlands Meeting 2014"* held at University of Nottingham, UK on April 25, 2014. Synthesis and Applications of 4*N*-Substituted Oxazoles, <u>Reddy R J</u>,* Gillie A, and Davies P W.
- 17) <u>Poster presentation</u> in "The 7th International Conference on Cutting-Edge Organic Chemistry in Asia (ICCEOCA-7)" held at Nanyang Technogocial University, Singapore, 11-14 Dec 2012. The Use of Functionalized Racemic Nitroallylic Acetates in Organocascade Kinetic Resolution, Roy S, Yeh L F, Reddy R J, Anwar S, Huang W-Y, Chen, Y-C, Kuan H-H, Chen Y-M, <u>Chen K</u>*
- 18) <u>Presented oral and poster</u> in "The 54th Symposium on the Chemistry of Natural Products, Tokyo 2012" held at Tokyo University of Agriculture, Setagaya Campus, 18-20 Sept, 2012. Synthesis of Isoquinoline Alkaloids by a Catalytic Intramolecular 1,3-Chirality Transfer Reaction, <u>Reddy R J</u>,* Ueda T, Mendu N, Kawai N, Uenishi J.
- 19) Oral presentation in "The 132 Annual Meeting of the Pharmaceutical Society of Japan" held at Hokkaido University, Sapporo, Japan 28-31 March 2012. Asymmetric total synthesis of (+)-Dysosyline and (+)-Colchiethanamine, <u>Reddy R I</u>,* Kawai N, Uenishi J.
- 20) <u>Presented a poster</u> in "*The Frontier Research in Medical Science Based on Biomolecular System*" held at Kyoto Pharmaceutical University, Japan, 18 February 2012. Construction of chiral 1-substitued tetrahydroisoquinoline ring and Its application to the synthesis of (+)-Dysosyline and (+)-Colchiethanamine, <u>Reddy R I</u>,* Ueda T, Kawai N, Uenishi J.
- 21) <u>Presented a poster</u> in the "8th AFMC International Medicinal Chemistry Symposium "Frontier of Medicinal Science" held at Keio Plaza Hotel Tokyo (Japan), 29 Nov-2 Dec 2011 and also presented a poster, Neutral Organocatalysts Promoting Dehydrative Cyclization with 1,3-Chirality Transfer; <u>Kawai</u> <u>N</u>* Ishibashi K; <u>Reddy RI</u> and Uenishi J.
- 22) Presented a poster in the "5th International Conference on Cutting-Edge Organic Chemistry in Asia (ICCEOCA-5) and the 1st New phase International Conference on Cutting-Edge Organic Chemistry in Asia (NICCEOCA-1)" held at Hsinchu, Taiwan, 7-11 November, 2010; Pyrrolidinyl-Camphor Derived Organocatalysts in Asymmetric Reactions Reddy R J, Chang C, Liu P-M, Ting Y-F and <u>Chen K.</u>*
- 23) <u>Oral and a poster</u> presented in 5th in-house symposium "Chemfest-2008" held at University of Hyderabad, Hyderabad (India), 01 & 02 March 2008. Simple and facile synthesis of tetralone-spiroglutarimides and spiro-bisglutarimides from Baylis-Hillman acetates Basavaiah D and <u>Reddy R I</u>.*
- 24) <u>Presented a poster</u> in the "National conference on "Current research trends & developments in heterocyclic chemistry" held at Osmania University, Hyderabad (India), 17 & 18 March 2006. Applications of Baylis-Hillman adducts: A simple, convenient, and one-pot synthesis of 3-benzoylquinolines Basavaiah D, <u>Reddy R I</u>* and Rao J S.
- 25) <u>Presented a poster</u> in "3rd in-house symposium "Chemfest-2006" held at University of Hyderabad, Hyderabad (India), 04 March 2006. Applications of Baylis-Hillman adducts: A simple, convenient, and one-pot synthesis of 3-benzoylquinolines Basavaiah D, <u>Reddy R J</u>* and Rao J S.
- 26) <u>Presented a poster</u> in the "National conference on "Chemistry in Drug industry" held at National Institute of Technology (NIT), Warangal (India), 07 & 08 October 2005. Simple, facile and one-pot conversion of the Baylis-Hillman adducts into functionalized 1,2,3,4-tetrahydroacridines and cyclopenta[b]quinolines Basavaiah D, Rao J S and <u>Reddy R I</u>.*
- 27) **Presented a poster** in "2nd in-house symposium "Chemfest-2005" held at University of Hyderabad, Hyderabad (India), 07 February 2005. TiCl₄ catalyzed tandem construction of C-C and C-O bonds: a

simple and one-pot atom-economical stereoselective synthesis of spiro-oxindoles Basavaiah D, Rao J S, **<u>Reddy R J</u>*** and Rao A J.

28) Participated in the *IUPAC International Conference on "Biodiversity and Natural Products: Chemistry and Medical Applications*" held at New Delhi (India), 26-31 January 2004.

Names and Addresses of Professional Referees:

Professor Deevi Basavaiah, IoE Research Chair Professor

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India. Email: <u>basavaiahdchem@uohvd.ac.in</u>; Tel: +91-9949093977.

Professor Paul W. Davies

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Email: <u>p.w.davies@bham.ac.uk</u>; Tel: +44 (0) 121 414 4408.

Professor Kwunmin Chen, Distinguished Professor,

Department of Chemistry, National Taiwan Normal University, 88 Sec. 4, Taipei 116, Taiwan. Email: <u>kchen@ntnu.edu.tw</u>; Tel: +886-2-89315831.

Professor Jun'ichi Uenishi

Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan. Email: <u>juenishi@phs.osaka-u.ac.jp</u>; Tel: + 81-75-595-4600.

Course	Subject		
PhD Course work,	• Strategies-Design of Organic Synthesis		
Dept. of Chemistry, UCS, OU	• Mass Spectrometry		
M. Pharmacy, UCT, OU	SEM-I: Modern Pharmaceutical Analytical Techniques (101T) &		
	SEM-II: Advanced Spectral Analysis (201T)		
	 Mass Spectrometry 		
	 NMR Spectroscopy 		
	SEM-I: Advanced Organic Chemistry – I (MPC 102T)		
	 Synthetic Reagents & Applications 		
	 Synthon approach and retrosynthesis applications 		
	SEM-II ADVANCED ORGANIC CHEMISTRY - II (MPC 202T)		
	 Stereochemistry & Asymmetric Synthesis 		
	• Pericyclic Reactions and Photochemistry		
M.Sc. Forensic Science, UCS, OU	FS 103 Instrumental Methods of Analysis-I		
	 UNIT I Atomic Spectrometry 		
	 UNIT III Infrared, Raman and NMR Spectrometry 		
	FS 202 Instrumental Methods of Analysis-II		
	 UNIT I Molecular Mass Spectrometry 		
	 UNIT IV Unit Measurements, signals and data 		
University College of Science,	C(CB3)-12: Supramolecular chemistry		
Saifabad, UCS, OU	OC(CB3)-26: Structure determination of natural products		
	OC-24: Chiral drugs		
	PO-(CB3)-27: Structure determination of natural products by		
	chemical and spectral methods		

TEACHING @ OSMANIA UNIVERSITY

Orientation/Refresher/Training programs attended.

- 1. Participated in **Refresher Course** for Teachers on "*Recent trends in Chemical Science and Technology*" UGC's Academic Staff College, OU, from Feb 15, 2018 to March 08, 2018.
- 2. Participated in **84th Orientation Programme** for Teachers: UGC's Academic Staff College, OU, from Jan 19, 2017 to Feb 16, 2017.
- 3. Participated in a one-Day Workshop on "*Teaching, Learning & Assessment Methodologies*" UCS, OU (17th Dec 2016).
- 4. Participated in *"Faculty Development Programme in Chemistry for UG Teachers: A Re-Orientation to the Restructured CBCS Curriculum"* from 13th-18th Dec-2018, organized by the Department of Chemistry, Osmania University.

RESEARCH @ OSMANIA UNIVERSITY

Present and Past Research Group Members

PhD Scholars:

1.	Dr. Md. Waheed	UGC-SRF	Awarded
2.	Dr. A. Shankar	CSIR-SRF	Awarded
3.	Dr. J. Jagadeesh Kumar	DST-INSPIRE-SRF	Awarded
4.	Dr. A. Haritha Kumari	DST-WOSA	Awarded
5.	Mrs. N. Sharadha	DST-INSPIRE-SRF	Ongoing

Dr. A. Haritha Kumari, Thesis Title: Exploration of Novel Diheterofunctionalization an Expedient Construction of 1,2-Thiosulfonylethenes, 1,1-1,2-Dithioalkenes, and 2,3-Disubstituted Benzoheteroles, submitted on 25-Aug-2023 and awarded on 26-Feb-2024.

Dr. J. Jagadeesh Kumar, Thesis Title: Applications of (E)- β -Iodovinyl Sulfones Towards the Synthesis of novel B-Keto (Thio)Sulfones, Sulfonyl-Derived Benzofurans and Benzopyrans, submitted on 24-Aug-2023 and awarded on 12-Feb-2024.

Dr. A. Shankar, Thesis Title: Studies Towards the Synthesis of N-Sulfonyl Triazoles, Allyl Sulfones and C3-Functionalized Imidazo[1,2-a]pyridines under Metal-Free Conditions, submitted on 29-Apr-2022 and awarded on 29-Nov-2022.

Dr. Md. Waheed, Thesis Title: Development of novel methodologies for the synthesis and applications of thiosulfonates: a facile construction of 4,5-disubstituted-1,2,3-triazoles, submitted on 25-Jan-2022 and awarded on 05-Jul-2022.

M. Sc./M. Pharm. Dissertations

1.	Mr. Vankudothu Gandhi from NIT Raurkela, July-2018 (3 months)	Completed
	Synthesis and applications of vinyldibromides and para-quinone methides	
2.	Ms. V. Niharika from Loyola Academy, Hyderabad, March 2019 (3 months)	Completed
	Divergent synthesis of aryl vinylsulfonyl ethers from beta-iodovinyl sulfones	
3.	Mr. R. Laxmareddy from Loyola Academy, Hyderabad, March 2019 (3 months)	Completed
	Metal free sulfenylation of imidazo[1,2-a]pyridines and an efficient synthesis of allyl su	ulfones
4.	Ms. Sandhya from Loyola Academy, Hyderabad, July 2019 (3 months)	Completed
	Synthesis of 2-aryl-imidazo[1,2-a]pyridines and 2-aryl-3-formyl-imidazo[1,2-a]pyridines	nes
_		

5. **Mr. Rabani** from Loyola Academy, Hyderabad, *July 2019* (3 months) *Completed Synthesis of gem-dibromolefins and their utility in organic synthesis*

6.		Completed
	A convenient synthesis of new thiosulfonates towards the synthesis sulfur-heterocycles	
7.		Completed
	A facile synthesis of beta-keto thiosulfones using thiosulfonates by geminal thiosulfonyl	
8.		Completed
	Synthesis of gem-dibromolefins and their utility in organic synthesis	
9.		Completed
	Synthesis of Deuterated (E)-beta-Iodovinyl Sulfones	
10.		Completed
	Simple and Convenient Synthesis of O-Vinyl Propargyl Alcohol and its Thioether derivat	
11.		Completed
	Synthesis and Applications of (E)- β -Iodovinyl Sulfones	
12.		Completed
	Applications of (E)- β -iodovinyl sulfones for the synthesis of vinyl sulfone-containing 1,6	-
13.		Completed
	Convenient Synthesis of Sulfonamide-derived 1,6-Enynes	
14.		Completed
	Convenient Synthesis of Acetyl-Derived 1,6-Enynols	
15.		Completed
	Simple and Facile Synthesis of S-2-(Phenylethynyl)Benzyl Thiosulfonates	
16.		Completed
	Simple and Efficient Synthesis of Ortho-Alkynyl Benzyl Thiosulfonates	
17.	Mr. Surigi Ramesh from Palamuru University, May-2023 (3 months)	Completed
	Simple and Expedient Synthesis of Ortho- Propargyl-Phenols/Anilines	
18.	Miss M. A. KHADEEJA from Sir Syed College, Kerala, March-2024 (3 months)	Completed
	Synthesis of 2-phenylimidazo[1,2-a]pyridine using (E)-b-iodovinyl sulfones	
19.	Miss K. RAJEENA from Sir Syed College, Kerala, March-2024 (3 months)	Completed
	Application of (E)-b-Iodovinyl Sulfones for Synthesis of (E)-b-Iodovinyl Thioether	-
20.	Mr. K. SAI KIRAN from Kakatiya University, March-2024 (3 months)	Completed
	Utilization of phenylethynyl benzyl bromide for the synthesis of phenylethynyl benzyl th	iol/sulfone
21.		ompleted
	Synthetic Approaches for 1,7-Enynol, 2-Vinyloxy Chalcone and 1,6-Diynol	
22.	Mr. G. Santosh Majhi from Loyola Academy, Hyderabad, July-2024 (3 months)	Completed
	Convenient Synthesis of 2-(Vinyloxy)Benzene Alkynyl Derivatives	

Focused Research Areas

Our group enthusiastically involving in the fundamental research on synthetic organic chemistry, especially *Organosulfur Chemistry* and *Total syntheses of tetrahydroisoquinoline natural products*

- Organosulfur Chemistry To develop novel photoredox catalytic or electrochemical sustainable methodologies for synthesis of sulfur-containing pharmaceutical ingredients and bioactive heterocycles.
- Asymmetric total syntheses of tetrahydroisoquinoline natural products To establish a new asymmetric organocatalytic methodology for synthesis of enantiomerically pure tetrahydroisoquinoline scaffold a key intermediate, which can utilize target synthesis of tetrahydroisoquinoline alkaloids/medicinal related motifs.

Research Outcome @ Osmania University

Our research group actively working on organosulfur chemistry, in particular, the applications of thiosulfonates and β -iodovinyl sulfones were well demonstrated. Several research projects are being in progress, few outcomes were already published, and other results are in different stages for publications.

To mention few achievements:

- (i) Thiosulfonates (RS–SO₂R¹) are the privileged class of organosulfur substrate and successfully demonstrated as a versatile precursor in organic synthesis (*see pictorial representation*).
 - Sulfenvlating agent: A novel a. oxidative difunctionalization of β iodovinyl sulfones with thiosulfonates and NaOAc in DMF has been developed to access a wide range of β -keto thiosulfones (Eur. J. Org. Chem. 2019, 3771). We have successfully developed an efficient and environmentally benign sequential one-pot protocol synthesis of for the 3sulfenylimidazo[1, 2-a pyridines using series of α -bromomethyl 2-aminopyridines ketones, and (<u>Asi</u>an J. thiosulfonates Org. Chem., 2019, 8, 2269). Cu(I)interrupted catalyzed clicksulfenylation of O-/N-propargyl benzyl thiosulfonates with organic azides has been disclosed to provides a range of triazole-fused eight-membered heterocycles in good to high yields (Adv. Synth. Catal. 2022, 364, 319).

- b. Sulfonylation agent: A highly regioselective, iodine-mediated sulfonylation of NH-1,2,3-triazoles using sodium thiosulfonates has been demonstrated to provide N-sulfonyl triazoles in moderate to high yields (<u>Tetrahedron Lett. 2018, 59, 2014</u>). Cs₂CO₃-promoted radical sulfonylation of Morita–Baylis–Hillman (MBH) bromides with thiosulfonates under mild conditions to access a series of allyl sulfones (<u>SynOpen, 2021, 5, 91</u>).
- c. **Thiosulfonylation agent**: A new and highly efficient vicinal thiosulfonylation of 1,1-dibromo-1alkenes or 1-bromoalkynes with thiosulfonates in the presence of cesium carbonate has been developed for the synthesis of a wide range of (E)-1,2-thiosulfonylethenes in moderate to high yields (<u>Adv. Synth. Catal. 2019, 361, 1587; Synthesis, 2021, 53, 2850</u>). A unique phenylboronic acidcatalyzed dimerization–sulfonylation of S-benzyl thiosulfonates has been disclosed for tandem construction of S–S and C–S bonds to access a wide range of benzyl disulfanylsulfone derivatives in high to excellent yields (<u>Org. Biomol. Chem. 2020, 18, 3243</u>).
- d. Moreover, the allyl thiosulfonates were readily-assembled using the Morita-Baylis-Hillman allyl bromides and sodium arylthiosulfonates without any reagent/catalyst (<u>RSC Adv. 2018</u>, 8, 40446). The allyl thiosulfonates were successfully transformed into a set of two synthetically viable allyl disulfanes in the presence of Cs_2CO_3 is reported.

- (II) Unprecedented reactivity of '*beta-iodovinyl sulfones*' was explored for first time in our laboratory (*see Schematic Diagram*).
- a. The palladium-catalyzed annulation between β -iodovinyl sulfones and 2-halophenols involving oxa-Michael addition-elimination and intramolecular Heck reaction leading to form 2,3-disubstituted benzofurans in good to high yields (<u>Adv. Synth. Catal. 2020, 362, 1317</u>).
- b. A unique vicinal bisthiolation of (E)- β -iodovinyl sulfones with thiols under the influence of $K_2CO_3/DMSO$ at room temperature for quick assembly of (E)-1,2-dithio-1-alkenes is demonstrated (J. Org. Chem.2022, 87, 3934).
- c. A novel cycloannulation between β -iodovinyl sulfones and N-tosylaminopyridines was also successfully developed for the synthesis of 3sulfonylpyrazolo[1,5-a]pyridines (Org. Biomol. Chem. 2022, 20, 4331).
- d. K_3PO_4 -mediated cycloannulation of (E)- β -iodovinyl sulfones with ortho-hydroxy chalcones/orthohydroxy cinnamates has been realized to access 2,3,4trisubstituted-4H-benzopyran derivatives (<u>Adv. Synth. Catal.</u> 2022, 364, 4080).

e. Base-mediated oxa-Michael

addition-elimination of (E)- β -iodovinyl sulfones with ortho-alkynylphenols, followed by cycloisomerization and unique stereoselective sulfonyl migration in one-pot, is realized under the influence of $Mn(OAc)_3$ · $2H_2O$ were readily accessed a broad range of vinyl sulfone-tethered chromenes in high yields (*Org. Lett.* **2023**, 25, 2207).

- f. A general and highly efficient Pd(OAc)₂-catalyzed intramolecular cyclization and vinylation of orthoalkynylphenols/ortho-alkynylanilines with (E)-β-iodovinyl sulfones under mild reaction conditions for the diversity-oriented synthesis of vinyl sulfone-tethered benzofurans and indoles in good to high yields (J. Org. Chem. 2023, 88, 8889).
- g. We present an efficient and transition-metal-free [4+1]-thioannulation of sulfonyl-tethered 1,3enynes with Na₂S in the presence of Cs₂CO₃ to generate 2,4-disubstituted thiophenes in good to high yields. We also established a formal [3+2]-cycloaddition of 1,3-sulfonylenynes with NaN₃ under metal- and base-free conditions to synthesize vinyl sulfone-containing 1,2,3-NH-triazole derivatives in moderate to high yields (<u>Asian J. Org. Chem., **2024**</u>, e202400211).

Details of Major Equipment/Asset in the PI Laboratory

Setting up an independent research laboratory has not been an easy task and the journey was started from scratch. It came with tons of challenges which are still ongoing, the funding crunches and administrative hassles at state universities like Osmania University. Therefore, initial TWO years period had been devoted to standardization of protocols to establish laboratory through extensive efforts by utilizing the research grants. One the other hand, challenges to get the grants and a huge responsibility of leading scholars on the right track, to motivate the students to practice science more & more.

SNo.	Generic Name of Equipment	Model & Make	Working	Utilization
		Year of Purchase	(Yes/No)	Rate (%)
1	Digital Balance 4 decimal with	Sartorius & BSA 224S-CW	Yes	100%
	Chemical resistant and UPS	& 2016		
2	Hot Air Oven (Memmert Type)	Vihhan & SSHO	Yes	100%
		& 2016		
3	Melting Point apparatus	DBK-Mumbai & 10 MPA 03	No	NA
		& 2016		
4	Refrigerator (SBS 591 L with twin	Samsung & RS552NRUA7E	Yes	100%
	cooling)	& 2016		
5	Rotary Evaporator, Vacuum Pump,	Heidolph & 2016	Yes	100%
	Vacuum Controller, Rotachill			
		HP & I7-4770, HP Laser Jet	Yes	100%
6	Computer, Printer and UPS (1KVA)	226 DN, APC/Numeric &		
		2016		
7	Fume Hood with Monkey bar stand	Cassia & CAF-1803	Yes	100%
		& 2016		
8	Magnetic Stirrer with Hot Plate (8	Heidolph & MR Hei	Yes	100%
	No's)	& 2016		
9	High Vacuum Pump	HHV Pumps & FD 12	Yes	100%
		& 2016		
10	Nitrogen and Argon gas cylinders	Cubic meter & Capacity-6	Yes	100%
	with regulators	& 2016		
11	Rotary Evaporator, Vacuum	Heidolph & 2019	Yes	100%
	controller and rotavac pump			
12	Refrigerator, 220 Lit.	Samsung & 2019	Yes	100%
13	Ultrachill Low Bath Temp.	Siskin & 2022	Yes	80%
14	Digital Balance 4 decimal with	Contech & 2022	Yes	100%
	Chemical resistant and UPS			
15	High Vacuum Pump	Hinduvac FD 12 & 2022	Yes	100%